跳到主要內容

8K organic CMOS

 from Panasonic


1. “OPF CMOS image sensor design technology”, in that, the photoelectric-conversion part and the circuit part can be designed independently.
The OPF CMOS image sensor has a unique structure, in which, the OPF performs a photoelectric conversion and the circuit area performs charge storage and signal readout functions completely independently. Using this OPF CMOS image sensor structure, we developed high-speed noise cancellation technology and high saturation technology in the circuit area which has a large available space. As a result, it is possible to realize simultaneously 8K resolution, 60fps framerate readout, wide dynamic range [4] (by achieving a high saturation level) and global shutter function, which are normally traded off.

2. “In-pixel capacitive coupled noise cancellation technique” which can suppress pixel reset noise at high speed even at high resolution
Because the OPF CMOS image sensor has a structure in which the OPF and the charge storage part are connected by metal plugs, accumulated charges cannot be completely read out. Therefore, there is a problem that it is affected by reset noise at the time of resetting the pixel (signal charge storage node). And, in a high-resolution sensor, such as an 8K sensor, it is necessary to drive large loads exceeding 4000 pixels aligned in the vertical direction at the same time as the time of noise cancellation, and therefore, the long time it takes to suppress noise is a problem. So, we developed a new structure that cancels pixel reset noise at high speed, even when high resolution pixels have to be driven, by using Panasonic’s original semiconductor device technology and the newly developed “in-pixel capacitive coupled noise canceller”. In this structure, the reset noise is suppressed at high speed by using the negative feedback loop provided for each pixel.

3. “In-pixel gain switching technology” that can achieve high saturation characteristics
In the OPF CMOS image sensor, by incorporating a large capacitor in the circuit part with a large available area, it is possible to realize both high sensitivity mode and high saturation mode with the same pixel structure merely by switching modes from the camera system. In the high sensitivity mode, it is possible to capture data up to a light intensity of 4.5k electrons with high sensitivity. Furthermore, by switching to the high saturation mode, it is possible to capture data up to a light intensity of 450k electrons. In this way, since the high saturation mode can capture up to 10 times the high sensitivity mode, it is possible to clearly display the fine winding structure of the lamp filaments, in which bright part gradation cannot be expressed, because it becomes overexposure in high sensitivity mode, as shown in Fig. 3 (a). Even in a scene with high contrast, such as shown in Fig. 5, from the facial expression of the person in the shadow of the stadium roof to the blue sky and clouds during a mid-summer day, and such as shown in Fig. 6, from the dimly lit room to the sunny garden, it will be possible to capture brilliant images without overexposure or underexposure.

4. “Voltage controlled sensitivity modulation technology” that can adjust the sensitivity by changing the voltage applied to the OPF.
The OPF CMOS image sensor can change the sensitivity of the OPF simply by controlling the voltage applied to the OPF. By utilizing this function, we can realize the following functions which could not be realized with conventional silicon image sensors.
Sensitivity Modulation Example 1: Global shutter function which can capture all pixels simultaneously at 8K resolution
By controlling ON / OFF of the voltage applied to the OPF and controlling the sensitivity of the OPF, we realize the “global shutter function” capable of imaging all pixels at the same time, even driving a large number of pixels like the 8K sensor. By capturing with the global shutter function, as shown in Fig. 3 (b), the letters on the rotating body are read sharply without distortion. In addition, as shown in Fig. 7, even at the time of high speed moving object capturing, such as when driving on a highway or at industrial inspection, capturing without distortion becomes possible.

In the conventional global shutter type silicon image sensor, it is necessary to add new elements such as transfer circuits and charge storage capacitors in order to accumulate charges simultaneously in all pixels. As a result, the area of the photodiode and that of the additional circuits must compete for space, there is a problem that the pixel size cannot be reduced and the amount of saturation electrons cannot be increased. On the other hand, in the OPF CMOS image sensor, since there is no need for additional elements, it is possible to realize small cell, high resolution sensors, and by incorporating large capacitors in the circuit part with a large available area, accurate imaging with no distortion from dark scenes to extremely bright scenes is possible. For example, as shown in Fig. 9, with the OPF CMOS image sensor, when buildings are photographed while panning [5] at high speed, even in scenes with high contrast like a bright sky and dark windows, it is possible to acquire image data maintaining all gradations of the whole area without distortion.

Sensitivity Modulation Example 2: “Electrical ND Filter Technology” which can change sensitivity continuously and steplessly
Conventionally it has been necessary to provide a plurality of ND filters according to photographing conditions and change them many times. On the other hand, in the OPF CMOS image sensor, merely by controlling the voltage applied to the OPF (VITO in Fig. 8) and changing the sensitivity of the OPF to the desired value, it is possible to electrically implement the ND filter function. By using this function, it becomes possible to simplify the photographic equipment and continuously, steplessly control the sensitivity which could not be realized with a conventional silicon sensor. Therefore, the possibility of capturing according to the scene is expanded.

In the future, we will utilize this OPF CMOS image sensor technology in various applications such as broadcasting cameras, surveillance cameras, industrial inspection cameras, automotive cameras, etc., and will contribute to realize high resolution, high speed and high precision imaging and sensing functions.  






 

atmarkit

Technical Terms:
[1] Global shutter:
Shutter operation which can captures the image at the same time with all pixels. Organic CMOS image sensors operate in rolling shutter mode in which exposure and shutter operation is executed row by row.
[2] ND filter
Abbreviated name of neutral density filter.
A filter that functions to evenly absorb light in the visible range and reduce only the light intensity without affecting color.
[3] Sensitivity modulation
The photoelectric conversion efficiency is changed according to the control. In the OPF CMOS image sensor, the photoelectric conversion efficiency can be changed by controlling the voltage applied to the OPF.
[4] Dynamic Range
Range of brightness that can be imaged.
(Ratio between the largest and the smallest values of brightness.)
[5] Panning
A technique for capturing wide scenes by moving the framing in the horizontal direction with a fixed camera, which is a common video capturing technique.

imicronews

留言

這個網誌中的熱門文章

越南香草

Ngo ~ "N-gaw" Mui ~ "Moo-ee" Ngo ~ "N-gaw" Mui ~ "Moo-ee" Ngo ~ "N-gaw" Mui ~ "Moo-ee" Ngo (N-gaw) ,  Mui  (Moo-ee )  Cilantro Ngo Gai (N-gaw guy), Mui Tau (Moo-ee Tao), Ngo Tau (N-gaw Tao)   Mexican Coriander,  Sawtooth Coriander, Culantro    娥女帝(拼音), 刺芹   特徵:娥女帝是短株形的植物,氣味清淡,葉邊呈鋸齒形,十分容易辨認。來源地:越南。 功效:和白夏差不多,娥女帝亦有祛濕、解毒及驅風的療效。建議食法: Pho,  (Bánh Xeò) 越南煎餅, 炒菜,湯,咖哩 Ngo Gai ~ "N-gaw guy" Mui Tau ~ "Moo-ee Tao" Ngo Tau ~ "N-gaw Tao" - See more at: http://vietworldkitchen.typepad.com/blog/vietnamese-herb-primer.html#sthash.I9rzkzwI.dpuf Rau Ram (Rau Rahm) Vietnam Coriander, Laksa Leaf, "Vietnamese mint(actually not a mint)" Peppery, quite spicy. In salad Hung (Hoong), , Hung Lang (Hoong Lang) Spearmint.  Vietnamese coriander Hung Lui (Hoong Lou-ee), Hung Diu(Hoong Zee-ew) round mint used in salad Hung Cay (Hoong Kay) Mint Rau Que, Hung Que (H

copycat comandante C40 grinder

 from facebook 尋日朋友話係強國網上買左支C40,重要係斑馬木,話要拎嚟同我炫耀下,咁咪拎過嚟我到開箱囉。   斑馬木都停產左好耐,重要買到全新,重要係強國網,佢話買左二千四人仔,我當然半信半疑,見到面拎上手都好重手下,紙盒都算幾真,都幾結實,印刷都唔覺有太大問題,打開盒先開始覺得唔對路(圖1-14開箱圖)。 -1號圖,招紙貼得有d皺,但印刷都算幾清晰。 -2、3號圖,打開就爛左。 -4、5號圖,玻璃樽色澤、材質明顯有問題。 -7同9號係片,一定要聽下啲聲,好怪。 -8號圖,可以睇到冚蓋後,好大條罅。 -10號圖睇到,9號條片扭左幾下,不停有碎跌出黎。 -11號圖,拎出黎就花曬。 -12、13號圖,本身印刷品質數都高,但對番正版個張唔會有黑色油墨跡。 -14號圖,主體Logo係焫落去,有凹凸感,之後用正版對比,先發現問題。  立刻拎支正版出黎比對下。 -15-19號圖,如果無正版盒係手,就咁拎住個假盒都可能呃到下人,但真盒一拎上手,非常硬正,敲落去感覺好唔同。     -20-25號圖,基本重量無太大分別,假貨手柄比較重,正版高度比較多一點點。 -26-30號圖,透明、茶色粉杯一比之下就睇得出分別,正版比較通透、清晰,玻璃瓶品質高。 -31-33號圖,手柄膠片位有花、有明顯水口位,正版無水口,好平滑,木柄和連接轉軸位置都有所不同。 -34號片,正版磁力強,手柄好穩陣,假貨倒轉就跌出嚟,連磁石都甩埋(35號圖)。 -36-37號圖,歸零後正版手柄會卡住,假貨由於磁石位置甩咗,所以鎖唔住。 -38-39號圖,塑膠位置標誌以及文字正版都比較突顯、清晰。 -40號圖,未用內膽就有多處刮花。 -41-44號圖,驟眼睇真係好似,螺絲都跟都幾足,但網上搵左好多圖睇過,基本上文字同刀邊都會有距離,假野比較貼。 -45號圖,刀頭格數卡位用嘅孔,開箱個時扭左幾下已經有碎屑跌出嚟,放大睇更明顯睇到分別,正版手工好好,假野好似月球坑咁。 -46-47號圖,46正版歸零後好平,47扭到好盡,歸零唔順暢,有少許凸起。   -48號片,調節格數聲音,都唔洗講,一聽就知大問題 -49-50號圖,假貨膠料位置明顯水口,螺絲也有分別。 -51-52號圖,正版刀頭用左成年都好新,假貨扭左半日都無,就刮左個圈出黎蝕曬,鋼水差。   -53-56號圖,木面Logo雖然都做到好真,但都搵到分別

劣質洗衣機入水喉

上面白色是最易找到,$2x. 但漏水. 灰色, $4x, 是假冒 "MADE IN ITALY"  假冒 "MADE IN ITALY"  的標緻  左面是白色膠喉的喉頭, 右面是灰色膠喉的喉頭, 上圖左面是真正 好貨 ( MADE IN ITALY )灰色膠蓋.右面是冒牌 白色膠蓋. 膠蓋在安裝扭緊時爆開  上圖左面是真正 好貨 , 標了其他規格.右面是冒牌, 單單印了 MADE IN ITALY  好貨的膠蓋是可以下移, 露出喉頭及黑色軟膠墊 黑色軟膠墊是有坑紋. 質感較柔軟. 緊後可以"迫實"水龍頭 及喉蓋, 沒有滲漏 正板 MADE IN ITALY 賣 $4x, 價錢絕對合理. 冒牌貨在旺角新填地街買的, 也是$4x. 真是要小心!!! NB: MADE IN ITALY 是否真正 意大利制造實在無從考 証